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Homework 3

1. One-time pad without the identity element in the key space (10 points). Recall
that in the lecture, we defined one-time pad encryption scheme over a group (G,o). The
encryption algorithm works as follows Encgc(m) = m osk. Let e be the identity element of
the group G. One observes that when using the one-time pad key sk = e, the ciphertext is
identical to the plaintext because ¢ = Encg(m) = moe =m.

It has been, therefore, suggested to modify the scheme by only encrypting with sk # e, in
other words, to have Gen choose sk uniformly at random from the set of G \ {e}. Prove that
this modified scheme is not secure.

Solution.
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2. Security of encryption schemes (10+10 points). For each of the encryption schemes
below, state whether the scheme is secure or not. Justify your answer in each case.

(a) The message space is M = {0,1,...,6}. Algorithm Gen chooses a uniform key from
the key space £ = {0,1,...,7}. The encryption algorithm Encg,(m) returns (sk + m)
mod 7, and the decryption algorithm Decgy(m) returns (¢ — sk) mod 7.

Solution.
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(b) The message space is M = {1,3,5,...,2019}. Algorithm Gen chooses a uniform key
from the key space K = {2,4,6,...,2020}. The encryption algorithm Encg,(m) returns
(sk+m) mod 2020, and the decryption algorithm Decg(m) returns (c—sk) mod 2020.
Solution.
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3. Equivalent definition of Perfect Secrecy (10 points). In the lecture we defined the
perfect security for any private-key encryption scheme (Gen, Enc,Dec) as follows. For any
message m, cipher-text ¢, and a priori probability distribution M over the set of messages, we
have:

PM=m|C=c|=P[M=m)]

Show that the above definition is equivalent to the following alternative definition. For all
messages m, m’, cipher-text ¢, and a priori probability distribution M over the set of messages,
we have:

P[C=c¢M=m]=P[C=cM=mn],
Remarks: (1) Proving equivalence means that you have to show that the first definition implies the second
definition. And, the second definition also implies the first definition.

(2) Additionally, in this problem, for simplicity, assume that in the the probability expressions no “division by

error’ occurs.

Solution.
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4. Defining Perfect Security from Ciphertexts (15 points). An upstart in the field of
cryptography has proposed a new definition for perfect security of private-key encryption
schemes. According to this new definition, a private-key encryption scheme (Gen, Enc, Dec)
is perfectly secure, if, for all a priori distribution Ml over the message space, and any two
cipher-texts ¢ and ¢/, we have the following identity.

Show that the definition in the class does not imply this new definition.

Remark. You need to construct a private-key encryption scheme that is secure according to the definition we

learned in the class. However, this scheme does not satisfy the new definition.

Solution.
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5. One-time Pad for 3-Alphabet Words (5-+5 points). We interpret alphabets a, b, ...,z as
integers 0, 1, ..., 25, respectively. We will work over the group (Z3g, +), where + is coordinate-

wise integer sum mod 26. For example, abx + acd = ada.

Now, consider the one-time pad encryption scheme over the group (236, +).

(a) What is the probability that the encryption of the message cat is the cipher text cat?
Solution.
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(b) What is the probability that the encryption of the message cat is the cipher text dog?
Solution.
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6. A Conjectured Private-key Encryption Scheme (15 points). Consider the following
encryption scheme.

e The message space M is the set of all n-bit strings that have exactly t-ones in them.
e The key space K is the set of all permutations from the set {1,2,...,n} to {1,2,...,n}.
e The set of all cipher-texts, represented by C, is identical to M.

The private-key encryption scheme (Gen, Enc, Dec) is defined below.

e Gen() : Return a random permutation sk from {1,2,...,n} to {1,2,...,n}.

e Encg(m): Return ¢, where ¢ is obtained by permuting the message m using the per-
mutation sk. For example, if m = mymsy ... m,, then the permutation of m using sk is
the string ¢ = cica. .. cn = Mge(1)Misk(2) - - - Msk(n)-

e Decg(c): Return m, where m is obtained from ¢ by inverting the permutation sk. For
example, if ¢ = cica ... ¢y, then decoded message is Cok=1(1)Csk=1(2) - - Cok—L ()

Is this scheme perfectly secure? If yes, then provide a proof. If no, then give a counterexample.

A worked-out example of the encryption algorithm. Let n = 4 and ¢ = 2. Therefore,
we have the set of messages M = {1100,1010,1001,0110,0101,0011}. Note that the size of
the set M is () = 6. The set K is the set of all permutations from the set {1,2,3,4} to the
set {1,2,3,4}. Note that there are a total of 4! = 24 such permutations.

Suppose the Gen() algorithm picked the following permutation
sk(1) = 3,sk(2) = 1,sk(3) = 4,sk(4) =2

Suppose Alice wants to encrypt the message m = mimomsmy = 1010 using the sk above.
Then, the cipher-text is ¢ = mgy (1) Mgy (2)Msk(3)Msk(4) = M3mimamz = 1100. When Bob wants
to decrypt the message ¢ = cicaczeq = 1100, he outputs m = cy-1(1)Coe1(2) Cok—1(3)Cok—1 (1) =
cocycicg = 1010.

Note that in the example presented above, we recovered the original message! However, is

this scheme secure?
Solution.
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7. Lagrange Interpolation(7+7+6 points). We want to derive a part of the Chinese Re-
mainder Theorem using principles of Lagrange Interpolation. Our goal is the following

Suppose p and ¢ are two distinct primes. Suppose a € {0,...,p—1} and b € {0,...,q — 1}.
We want to find a natural number x such that

x (modp)=aandx (modgq)=">

We shall proceed towards this objective incrementally (similar to the approach of Lagrange
interpolation).

(a) Find a natural number z, satisfying x, (mod p) =1, and z, (mod ¢) = 0.
Solution.
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(b) Find a natural number z, satisfying =, (mod p) =0 and z,; (mod ¢q) = 1.
Solution.

10
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(c) Find a natural number z satisfying = (mod p) = a and x (mod ¢) = b.
Solution.

11
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8. An Illustrative Execution of Shamir’s Secret Sharing Scheme (6+1049 points). We
shall work over the field (Z7, +, x). We are interested in sharing a secret among 6 parties such
that any 4 parties can reconstruct the secret, but no subset of 3 parties gain any additional
information about the secret.

Suppose the secret is s = 2. The random polynomial of degree < 4 that is chosen during the
secret sharing steps is p(X) = X3 +3X + 2.

(a) What are the respective secret shares of parties 1, 2, 3, 4, 5, and 67
Solution.

12
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(b) Suppose parties 1, 2, 5, and 6 are interested in reconstructing the secret. Run Lagrange
Interpolation algorithm as explained in the class.

(Remark: It is essential to show the step-wise reconstruction procedure to score full points. In particular,
you need to write down the polynomials p1(X), p2(X), p3(X), and p4(X).)
Solution.

13
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(c) Suppose parties 1, 2, and 5 get together. Let ¢z(X) be the polynomial that is consistent
with their shares and the point (0,5), for each s € Z,. Write down the polynomials

QO(X)a Q1(X)7 ) QG(X)
Solution.

14
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9. A bit of Counting (8+8+9 points). In this problem, we will do a bit of counting related
to polynomials that pass through a given set of points in the plane. We already did this
counting (slightly informally) in the class. Writing the solution for this problem shall make
the solution’s intuition more concrete.

We are working over the field (Z,, +, %), where p is a prime number. Let P; be the set of all
polynomials in the indeterminate X with degree <t and coefficients in Z,.

(a) Let (z1,91), (z2,92), ..., and (x4, y;) be ¢ points in the plane Z}%. We have that x; # x;
for all ¢ # j, that is, the first coordinates of the points are all distinct.

Prove that there exists a unique polynomial in P; that passes through these ¢ points.

(Hint: Use Lagrange Interpolation and Schwartz—Zippel Lemma. )
Solution.

15
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(b) Let (x1,y1), (z2,%2), ..., and (z4—1,y:—1) be (t — 1) points in the plane Zg. We have
that x; # x; for all i # j, that is, the first coordinates of the points are all distinct.

Prove that there are p polynomials in P, that pass through these (t — 1) points.
Solution.

16
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(c) Let (x1,y1), (z2,92), ..., and (x, yx) be k points in the plane ZIZ,, where k < ¢t. We have
that x; # x; for all i # j, that is, the first coordinates of the points are all distinct.

Prove that there are p'~* polynomials in P; that pass through these k points.
Solution.

17
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Collaborators :

18



